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ABSTRACT: The process industry is increasingly making use of Risk Based Inspection (RBI) techniques to
develop cost and/or safety optimal inspection plans. This paper makes use of the gamma stochastic deteriora-
tion process to model the corrosion damage mechanism. This model is successfully extended to update prior
knowledge over the corrosion rate with imperfect wall thickness measurements. This is very important in the
process industry as current non-destructive inspection techniques are not capable of measuring the exact mate-
rial thickness, nor can these inspections cover the total surface area of the component. The model is illustrated
by examples using actual plant data.

1 INTRODUCTION
In order to illustrate the requirements, which are nec-
essary for the development of a suitable model, we
start with a general introduction on current practices
in the process industry concerning the use of decision
models for inspection planning.

1.1 Risk Based Inspection
Since the late 1980’s, numerous companies and or-
ganizations have developed several qualitative and
quantitative models to aid plant engineers with the
prioritization of component inspections. The aver-
age chemical process plant or refining installation
will have thousands of components like pipelines,
columns, heat exchangers, steam vessels etc. which
operate under significant pressure. This pressure,
combined with the corrosive nature of the chemicals
inside the systems and the exposure to the weather on
the outside, will degrade the quality of the construc-
tion material of the components. Among the most
common degradation mechanisms are internal and ex-
ternal thinning (e.g. corrosion), cracking, brittle frac-
ture and fatigue.

The highest uncertainties in the decision model are
associated with the rate at which these mechanisms
reduce the resistance of the construction material. In-
spections are used to reduce this uncertainty, but since
current wall thickness or crack length measurement
techniques are not perfect, the measurements contain
(small) errors. Some inspection techniques, e.g. ultra-

sonic wall thickness measurements, are highly accu-
rate, but there is always the spatial variability in the
measurements. This means that the quality of the ma-
terial is not uniform for the whole component. Inspec-
tions have to be carried out such that the most critical
spots are covered and such that the average measure-
ment is representative for the complete item. Decision
models should take these measurement errors into ac-
count.

1.2 Current methodologies

A common approach in tackling the inspection prob-
lem, is to start with a prioritization. This means that
usually a more qualitative model is used to deter-
mine the components which constitute the highest
risk. The assumption is that 80% of the risk is gen-
erated by only 20% of the components. This prior-
itization is then followed by a detailed quantitative
analysis of these high-risk items, in which the remain-
ing lifetimes are estimated and the consequences of
failures are modelled. The American Petroleum In-
stitute (API) has published a large document (Amer-
ican Petroleum Institute 2000), which describes the
methodology developed in cooperation with an in-
dustry sponsor group. This document has become a
methodology in itself and is used by many companies
as a basis for further development.

Typically, structural reliability methods are used
to estimate the failure probabilities of the compo-
nents. The condition of the construction material is
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described by a state function g, which is represented
by a resistance (R) minus stress (L) model:

g = R−L. (1)

The uncertain variables in this model have normal
densities with suitable parameters assigned to them.
The failure probability is then approximated by us-
ing a reliability index method (e.g. FORM: First Or-
der Reliability Method), which makes use of the limit
state g = 0 or R = L. Many of the methods cur-
rently applied in the process industry, also make use
of a simple discrete version of Bayes’ theorem to up-
date prior knowledge, or an estimate for the rate of
degradation, with inspection results. The likelihood in
Bayes’ formula represents the likelihood of an inspec-
tion correctly identifying the state of the component.

In the following sections we will take a different
approach to this problem. We will use the gamma
stochastic process to model the degradation and we
will update the parameters of this process using in-
spection data. This is inspired by the successful appli-
cation of this stochastic process to the problem of op-
timally inspection large civil structures like dikes and
storm-surge barriers, e.g. see (van Noortwijk 1996).
It is not claimed that this is the best approach to
this problem. The purpose of this paper is to illus-
trate the versatility of the gamma process and to show
that there is great potential for its use in the pro-
cess industry. Characteristically, in the development
of most current models, many assumptions and sim-
plifications are applied in order to keep the models
easy to use. We will use the same approach in order
to avoid large amounts of input and to keep the nec-
essary input as simple as possible.

2 MODELLING THE DETERIORATION
In this paper we will only consider degradation due
to corrosion, but the application of this model is not
restricted to this damage mechanism. For this purpose
we will first define the corrosion state function, after
which the gamma process with suitable parameters is
introduced.

2.1 Corrosion state function
The state function for corrosion is taken from (Amer-
ican Petroleum Institute 2000) and is defined as:

g(t) = S

(

1−C
t

x0

)

︸ ︷︷ ︸

Resistance

−P
d

2x0
︸ ︷︷ ︸

Load

, (2)

where S [MPa = 10 bar], C [mm/yr] and P [bar] are
random variables representing the material strength,
corrosion rate and operating pressure respectively.
The component diameter d [mm] and the initial ma-
terial thickness x0 [mm] are assumed to be known.

Next to the variables are the dimensions which are
used throughout this paper. Note that the amount of
wall loss at time t is given by w(t) = C × t [mm].

The component is assumed to have failed at time t
when g(t) < 0. If t′ is the time at which failure occurs,
i.e. g(t′) = 0, then w(t′) = C × t′ is the maximum
amount of wall thickness which can be lost until the
component fails. If we call this the safety margin m,
then we can calculate this amount from the state func-
tion (2):

m = w(t′) = x0 − P
d

2S
. (3)

Each component will usually have a so-called cor-
rosion allowance cmax associated with it. This is a
value given by the manufacturer of the component and
represents the maximum amount of wall loss up to
which the component is assumed to be able to func-
tion safely. It should hold that 0 ≤ cmax ≤ m, which
means that we can write the corrosion allowance as a
percentage of the safety margin:

cmax = ρm, 0 ≤ ρ ≤ 1. (4)

We will use this value as the replacement level, i.e.
we will preventively replace the component if the wall
loss is more than the corrosion allowance.

2.2 Gamma deterioration process
Instead of using a reliability index method, we will
model the cumulative wall loss with a gamma process.
We will use the following definition for the gamma
density with shape parameter α > 0 and scale param-
eter β > 0:

Ga (x|α,β) =
βα

Γ(α)
xα−1exp{−βx} for x ≥ 0 (5)

The gamma process with shape function at > 0, t ≥ 0
and scale parameter b > 0 is a continuous–time pro-
cess {X(t) : t ≥ 0} with the following properties:

1. X(0) = 0 with probability one,

2. X(τ)−X(t) ∼ Ga (a(τ − t), b) for τ > t ≥ 0,

3. X(t) has independent increments.

Let X(t) denote the amount of deterioration at time t,
then the probability density function of X(t) is given
by

fX(T )(x) = Ga (x|at, b) (6)

In essence, we replace the amount of wall loss w(t)
with the process X(t). There are a number of ad-
vantages to using the gamma process. Most interest-
ingly, the increments are always positive, therefore
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increases in wall thickness are not allowed for. The
fact that increments are independent and therefore ex-
changeable fits well with the physics of corrosion and
deterioration in general.

Using moment generating functions, it can be
proven that the expectation and the variance of the
process X(t) are given by:

E (X(t)) =
a

b
t and Var (X(t)) =

a

b2
t. (7)

Assuming that the expectation and variance are linear
in time, i.e.

E(X(t)) = µt and Var(X(t)) = σ2t,

we find that the parameters of the process X(t) are
defined as:

a = µ2/σ2 and b = µ/σ2, (8)

where µ is the expectation for the average corrosion
rate and σ2 is the variance of the process. These two
parameters are uncertain and assessing both variables
for each individual component is too much work. In
order to keep the method practical and easy to use for
the plant engineer, we will fix the standard deviation σ
relative to the mean µ through the use of a coefficient
of variation ν (this coefficient is often referred to as
the COV):

σ = ν × µ =⇒ ν = σ/µ. (9)

This approach is used in many of today’s models:
the variances of the uncertain variables are predeter-
mined by expert judgment and subsequently fixed in
the model. Using (9), the density for X(t) in (6) re-
duces to

fX(t)(x) = Ga
(

x

∣
∣
∣
∣

t

ν2
,

1

µν2

)

. (10)

Now we are only left with the uncertain variable µ for
the average corrosion rate. In the following section
we will define a suitable prior density for this vari-
able and we will discuss the consequence of fixing σ
relative to µ.

3 INSPECTION UPDATING
Due to the fact that most components are usually at
most inspected every 2 years, with the average in-
spection interval being about 6 to 8 years, there is
not enough data available for a statistical method like
regression analysis. Using Bayesian updating we can
efficiently incorporate the measurements and the en-
gineer’s prior knowledge or estimate of µ.

3.1 Choosing the prior
Due to the large number of components and the usu-
ally limited experience of the plant engineer with
probability theory, it is not feasible to ask this engi-
neer to assess a suitable density for µ. In line with
current practices in the process industry, we will only
ask for an average corrosion rate over which a default
density will be placed. The API (American Petroleum
Institute 2000) uses the simple discrete prior density,
which is shown in Figure 1. The idea behind this den-
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Figure 1: The API discrete prior and the related (continu-
ous) inverted gamma density.

sity is that the model has 50% confidence in a cor-
rosion rate which is less than or equal to the rate as-
sessed by the plant engineer. The other 50% is divided
into 30% between 1 and 2 times the assessed rate and
20% between 2 and 4 times the engineer’s estimate.

For our gamma process model we will not use this
discrete prior, but a continuous inverted gamma den-
sity. The definition of this density is given by

Ig(x|α,β) =
βα

Γ(α)

(
1

x

)α+1

exp
{

−
β

x

}

(11)

for x ≥ 0. Notice that a random variable X is inverted
gamma distributed if Y = X−1 ∼ Ga(α,β) with shape
parameter α > 0 and scale parameter β > 0. With suit-
able choices for the parameters, we can again define
a default prior density for µ as is shown in Figure 1.
Most confidence is placed between the engineer’s as-
sessment and 2 to 3 times this value. The prior den-
sity in Figure 1 is arbitrarily chosen for the purpose
of demonstration. In practice, the parameters of this
density should be determined using expert judgment.
One could also define a number of different default
priors from which the practitioner can select the one
which best represents his own confidence/uncertainty
in the degradation rate.
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In the following sections we will use Bayes’ the-
orem to update the prior density with the likelihood
of the inspection measurement to obtain a posterior
density. The continuous version of Bayes’ theorem is
given by

π(µ|x) =
l(x|µ)π(µ)

∫
∞

µ=0
l(x|µ)π(µ)dµ

, (12)

where π(µ) is the prior density for µ and l(x|µ) is the
likelihood of measurement x given µ.

3.2 Case 1: perfect inspections
The choice for the inverted gamma prior becomes
clear when we only consider perfect inspections. In
other words, we first assume that we can measure the
exact wall thickness. We can then precisely determine
the amount of wall loss x at time t and it can proven
that the posterior π(µ|x) is given by

π(µ|x) = Ig
(

µ

∣
∣
∣
∣
α +

t

ν2
, β +

x

ν2

)

, (13)

where α and β are the parameters from the prior den-
sity. The fact that the product of the inverted gamma
density and gamma distributed likelihood is again
proportional to a inverted gamma density is also used
in (van Noortwijk et al. 1995).

The equivalent of (13) for n ≥ 1 inspections is

π(µ|x1, . . . , xn) =

= Ig

(

µ

∣
∣
∣
∣
∣
α +

n∑

i=1

ti − ti−1

ν2
, β +

n∑

i=1

xi − xi−1

ν2

)

.

which reduces to

π(µ|xn) = Ig
(

µ

∣
∣
∣
∣
α +

tn
ν2

, β +
xn

ν2

)

, (14)

if we assume that x0 = 0 at t0 = 0. In other words, be-
cause we fixed the standard deviation σ relative to the
mean µ, only the last inspection is needed to calculate
the posterior when using perfect measurements. Be-
sides the fact that perfect measurements do not exist,
this result will be hard to sell to any plant engineer or
regulator.

3.3 Case 2: imperfect inspections
This is where we present the main feature of this pa-
per, namely the extension of the gamma process up-
dating model with uncertain measurement data. Sim-
ilar to (Newby and Dagg 2002), we consider a new
process Y (t), which includes the original process
X(t) together with a normally distributed error ε:

Y (t) = X(t) + ε, ε ∼ N (0, σε). (15)

Here we assume the error has a mean 0 and a stan-
dard deviation σε. Taking a mean different from zero
would mean that the inspection tends to over- or un-
derestimate the actual wall loss. The likelihood of the
measurement y given the corrosion rate µ is now de-
termined by the convolution:

l(y|µ) = fY (t)(y) =

∫
∞

−∞

fX(t)(y − ε)fε(ε)dε, (16)

where fX(t)(y − ε) = Ga(y − ε|at, b) is the likelihood
of the gamma increment X(t) as given by (10). We
immediately go over to the likelihood for more than
one inspection:

l(y|µ) =
∏

k

lY (tk)−Y (tk−1)(yk − yk−1|µ), k > 1, (17)

where y = {y1, . . . , yk} are the wall loss measure-
ments. In (17), we have used the fact that the incre-
ments are independent. Now we introduce some nota-
tion: the increment of X(t) between two inspections
is defined as Dk = X(tk) − X(tk−1), the difference
between two measurements is dk = yk − yk−1. Using
this notation and the integral convolution as in (16),
the likelihood (17) can be rewritten as

l(y|µ) =

∫
∞

−∞

· · ·

∫
∞

−∞

· · ·

· · ·
∏

k

fDk
(dk − δk)f(δ1, . . . , δk)dδ1 · · ·dδk, (18)

where δk = εk − εk−1. Clearly the δ’s are not inde-
pendent since every δk depends on δk−1. We are left
with two options: we calculate the covariances be-
tween the δ’s and analytically solve the likelihood us-
ing the joint distribution of the δ’s or we simulate the
εk’s and approximate the likelihood. Since the first op-
tion will complicate matters considerably, we will use
the simulation approach. The likelihood (18) can be
formulated as an expectation, which in turn can be
approximated by the average of the product:

l(y|µ) = E

{
∏

k

fDk
(dk − δk)

}

≈

≈
1

N

N∑

j=1

∏

k

fDk

(

dk − δ
(j)
k

)

as N −→ ∞. (19)

Here we use the law of large numbers to perform a so-
called Monte Carlo integration. For each inspection k
we
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1. sample ε
(j)
k for j = 1,2, . . . ,N and

2. calculate δ
(j)
k = ε

(j)
k − ε

(j)
k−1, then finally

3. calculate (19).

Since the gamma distributed fDk
(x) is not defined for

x < 0, we need to make sure that the argument is non-
negative. We have worked our way around this prob-
lem by using the minimum function as follows:

l(y|µ) ≈
1

N

N∑

j=1

∏

k

fDk

(

dk − min
{

δ
(j)
k , dk

})

(20)

as N −→ ∞, where

fDk

(

dk − min
{

δ
(j)
k , dk

})

=

= Ga
(

dk − min
{

δ
(j)
k , dk

}
∣
∣
∣
∣

tk − tk−1

ν2
,

1

µν2

)

.

Equation (20) can now be substituted in Bayes’ for-
mula (12), which can then be solved by discretization
(i.e. simple numerical integration) to obtain the pos-
terior π(µ|y1, . . . , yn).

The choice for use of simulation to determine (18)
greatly reduces the efficiency of the model, but we
also see that the choice for the prior distribution is
then no longer restricted to the inverted gamma den-
sity. Also, we can easily introduce correlated mea-
surement errors (εk) using a multivariate normal dis-
tribution in order to see the effect of inspection de-
pendence on the end result. Due to the absence of the
required data, we have not included this here.

4 DECISION CRITERION
We now have a posterior density over the average cor-
rosion rate, which incorporates the plant engineer’s
prior knowledge and all the available inspection data.
Using this density and the densities for the uncertain
variables S (material strength) and P (operating pres-
sure), we can calculate the probability of failure or a
preventive replacement of the component as a func-
tion of time.

Inspections in a process plant are very expensive
due to the fact that the process often has to be stopped
during the inspection. Also, because many compo-
nents contain highly corrosive and/or toxic chemicals,
they have to be flushed and cleaned before an internal
inspection can be done. The waste resulting from this
rinsing needs to be treated, which brings added costs
to the whole procedure. We therefore would like to
make a cost optimal decision on when to inspect the
components. This means that we want to maximize

the time interval between two subsequent inspections.
On the other hand, we have to ensure that the com-
ponent operates safely and therefore we also need to
make sure that we do not inspect at too large inter-
vals. For this purpose we use a cost based criterion,
suggested by (Wagner 1975), called the expected av-
erage cost per time unit. This cost criterion is derived
using renewal theory and uses the concept of the com-
ponent life cycle. The length of this cycle is the time
from the service start until a renewal, which is either
a preventive replacement or a corrective replacement
due to failure. The expected average costs per time
unit is given by the ratio of the expected costs per
cycle over the expected cycle length, see e.g. (van
Noortwijk et al. 1997):

C(θ,∆k) =

∑
∞

i=1 ci(θ,∆k)pi(θ,∆k)
∑

∞

i=1 ipi(θ,∆k)
, (21)

where ci and pi are respectively the costs incurred dur-
ing time unit i and the probability of renewal during
this time unit. The ratio is a function of the replace-
ment and failure levels, which is represented here by
θ = {m,ρ}, and we calculate this ratio for each in-
spection interval ∆k. The failure probability also de-
pends on the three uncertain variables S, P and C.
For the sake of legibility, they are not included in the
above equation. We refer to (Kallen 2002) for the de-
tails of the implementation of this particular model,
which can be obtained by request from the authors.

In order to include the uncertainty over the material
strength, operating pressure and the corrosion rate,
we apply the same technique as in equation (19). We
need to determine the expectation of (21), therefore
we sample a large number of sets for the three uncer-
tain variables: {s(j), p(j), c(j)}, j = 1,2, . . . ,N . For a
sufficiently large N , the average of the calculated (21)
will approximate the expectation. The corrosion rate
can be sampled from the posterior π(µ|y1, . . . , yn),
which we have determined in section 3.3.

5 CASE STUDY: INSPECTING A HYDROGEN
DRYER

We will illustrate the gamma process decision model
with a case study on a hydrogen dryer. Table 1 sum-
marizes the operational and measurement data, which
is taken from an undisclosed plant in the Netherlands.
The cost numbers are fictive. The material strength
is determined using the tensile (TS) and yield (YS)
strengths with the equation:

S = min{1.1(TS + Y S)/2, TS} .

The values for these strengths can be looked up in
(ASME 2001). The uncertainty in S comes from the
fact that these values represent the minimum require-
ments for this particular material type and therefore
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Component type: vertical drum
Material type: carbon steel
Service start: 1977
Tensile strength (TS): 413.69 MPa
Yield strength (YS): 206.84 MPa
Operating pressure: 32 bar(g)
Drum diameter: 1180 mm
Init. material thickness: 16.8 mm
Corrosion rate (est.): 0.1 mm/yr
Corrosion allowance: 4.5 mm
Ultrasonic wall thickness measurements:
1982: 15.0 mm
1986: 15.6 mm
1990: 14.6 mm
1994: 14.2 mm
1998: 13.8 mm
Costs for different actions:
Inspection: 10,000 $
Preventive replacement: 50,000 $
Failure + replacement: 1,000,000 $

Table 1: Operational, material and inspection data for a hy-
drogen dryer.

the material could be stronger. On the other hand, the
material loses strength when it is processed by the
manufacturer of the component, therefore it could be
weaker than indicated.

Note that we will disregard the measurement taken
in 1982, because it is too inaccurate to be considered
for this analysis. This is not uncommon practice in the
process industry, as older measurements (older than
10 to 15 years) are not considered to be reliable. This
is due to the fact that the quality of the inspection
techniques used in those days is not comparable to
the accuracy of current techniques. Our gamma pro-
cess model can incorporate this measurement only if
the uncertainty distribution of the error term is chosen
such that the probability of material growth is very
small.

In the Netherlands, the inspection of pressurized
vessels is regulated by the Dutch rules for pressure
vessels (Stoomwezen 1997). All types of components
are categorized and for each category there exists a
fixed mandatory inspection interval. For the hydro-
gen dryer in our example the fixed interval is 4 years,
which can be clearly observed in the measurement
dates. If a plant engineer wants to extend this interval
based on the results of a RBI analysis, then he will
have to submit an application to the proper authori-
ties for acceptance. The rules require all components
to have had at least one regular inspection, according
to the fixed intervals, before this application can be
made. For items with a fixed interval of 2 years, this
minimum is two inspections. There will thus always
be at least one set of measurement data available for
the model to be applied.

Using the Bayesian updating mode, which we have
discussed in section 3, we can calculate the posterior
density for the corrosion rate given the measurement
data in Table 1. The results are shown in Figure 2. For
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Figure 2: Posterior densities for 1 perfect and 4 imperfect
inspections compared to the prior density.

comparison purposes, we have also included the pos-
terior density, which we would get if we assumed that
the measurements were exact. In this case only the last
measurement is of importance, as we have determined
in equation (14). The difference between the perfect
and imperfect inspections is quite large. The assump-
tion of perfect inspections clearly increases the con-
fidence in the estimated corrosion rate considerably
compared to the assumption of imperfect inspections.

The next step is to use the posterior density for the
corrosion rate, the densities for S and P , and the cost
criterion from section 4 to determine the optimal in-
spection period until the next inspection.
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Figure 3: Expected average costs per year for the hydrogen
dryer.
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In Figure 3, we can see that the expected average
costs per year will be high when we inspect too often
and when we inspect too little. The result for the opti-
mal inspection interval length is ∆k = 37yrs, but since
the column was taken into service in 1977, we have
to deduct its age of 25 years from this result. There-
fore, the optimal period until the next inspection is 12
years. This is a very acceptable result, because it is
less than the absolute maximum of 50 years and no
more than 4 times the regular prescribed inspection
interval of 4 years for this type of component. If this
next inspection increases the confidence in the corro-
sion rate, then this model can be used again to deter-
mine the optimal inspection interval starting from the
service start. A risk-averse decision maker can decide
for a shorter inspection interval based on the result in
Figure 3. A choice for ∆k between 29 and 37 years
will not significantly increase the expected costs per
year. With current models, the decision maker will de-
termine the failure probability as a function of time
using the state function (2). Subsequently he will ei-
ther choose to inspect before the fifth quantile of this
distribution or he will define a risk criterion to deter-
mine the time before which an inspection should take
place.

Future development of this model will include the
calculation of the standard deviation of the expected
costs per year. Interested readers can take a look at
(van Noortwijk 2003), which discusses in great detail
the required formulas for this purpose.

To finish, we note that the model will also be appli-
cable when no inspection data is available. In other
words: even when the component is new, we will
be able to determine a responsible inspection inter-
val with this decision model. The high uncertainty in
the prior density for the degradation rate will initially
make the optimal inspection interval quite short. As
the number of measurements increase, so will the time
between inspections increase.

6 CONCLUSIONS
There are a number of conclusions to be drawn
from this research. First, we have determined that
the gamma process is a suitable stochastic process to
model the uncertain reduction of wall thickness due
to corrosion. In line with what is currently done in the
process industry, we have considerably simplified the
parameters of this process by fixing the variance to the
mean of the process. Together with the assumption of
a fixed prior density for the average corrosion rate,
this results in a model with minimum input require-
ments. This is a very desirable feature, as we are typ-
ically dealing with hundreds, maybe even thousands,
of components in the average plant.

Next, we have created a simple extension to the
Bayesian updating model, such that the model can in-

corporate the results from inaccurate measurements.
In this step we have lost a lot of efficiency, because
we have taken the path of simulation to solve the re-
sulting equations. If we also consider other variables
to be uncertain, e.g. the material strength or operating
pressure, then the computational effort also becomes
larger. The efficiency of the model is where the great-
est improvements can be made in the future.

In order to make both cost optimal and safe inspec-
tion decisions, we have used the cost criterion of the
expected average costs per year. Not only does this
criterion fit well with our requirements, it also results
in a graph which is easy to interpret by the plant engi-
neers. This will ensure that the model will have some
transparency and it will be less of a black box to the
practitioners. Experience shows that the presentation
of a single optimal value often leaves practitioners
and regulators with more questions than they started
out with.

The case study on a hydrogen dryer showed encour-
aging results of the whole model. We conclude that
the use of the gamma Bayesian stochastic process is a
viable alternative to the structural reliability methods
which are currently used in the process industry.
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