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ABSTRACT: Infrastructures in the Netherlands are rated according to a discrete condition scheme and the re-
sults are registered in an extensive database. The paper discusses the application of a continuous-time Markov
process for modelling deterioration and introduces new results for optimizing periodic inspections and pre-
ventive maintenance. The focus of this discussion is on the condition of superstructures of concrete highway
bridges in the Netherlands for which 19 years of inspection data are available.

1 INTRODUCTION

Inspection and maintenance planning of bridges in the
Dutch national road system is one of the responsibili-
ties of the Civil Engineering Division of the Ministry
of Transport, Public Works and Water Management.
In recent years, several studies have been done to as-
sess the rate of deterioration in concrete bridges. It
has proven to be difficult to reach a consensus on pa-
rameters of physical models, e.g. chloride ingress, and
on how these physical processes affect the load bear-
ing capacity of a bridge. A statistical approach was
presented in van Noortwijk and Klatter (2004), where
lifetime distributions were used to model the uncer-
tain lifetime of bridge elements. Weibull distributions
were fitted to data of current and replaced bridge ages.

As is done in many other countries, infrastructures
in the Netherlands are inspected on a regular basis and
the observed condition of the structure is given on a
discrete scale with a finite number of condition states.
An important property of these inspections is that
they are performed periodically as opposed to contin-
uously. Because of this, the exact times of transitions
between states are not observed. Also, the qualitative
nature of condition states makes is practically impos-
sible to precisely identify the exact moment of a tran-
sition. The distinction between states, in most condi-
tion rating systems, is not strict and the interpretation
of each condition state is subjective.

Current bridge management systems commonly
use discrete-time Markov processes (Markov chains)
to model the uncertain deterioration in time. This
probabilistic approach is well suited for modelling de-

terioration on a discrete condition scale. Also, most
calculations that are involved are relatively straight-
forward and computationally efficient. Nonetheless,
concerns about the suitability of their use have in-
creased in recent years. Aging is a property which
is notably missing in modelling deterioration using a
Markov chain. This is a property in which the prob-
ability of the structure performing a state transition
increases in time. It can be included by using a prob-
ability distribution with increasing failure rate for the
uncertain time spent in each condition state. For ex-
ample, Kleiner (2001) and Mishalani and Madanat
(2002) have suggested the use of a Weibull distribu-
tion for this purpose. However, one needs to know
the exact duration between transitions to be able to
determine the parameters of the Weibull distribution.
As explained earlier, this information is not available.
However, this approach has the nice property that
transitions are not restricted to discrete moments in
time, but occur on a continuous-time scale.

In the present paper, a continuous-time Markov
process with exponential waiting times is applied to
the bridge inspection data in the Netherlands. Section
2 discusses the inspection data, section 3 presents the
notation used throughout the remainder of the paper,
and section 4 introduces the continuous-time Markov
process for modelling deterioration. The latter section
discusses the maximum likelihood estimator for the
mean rate of deterioration and presents new analyti-
cal results for an inspection model, which allows for
preventive maintenance. Two example applications
are presented, in which the optimal inspection inter-
val is calculated based on the expected average costs
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Table 1. Unofficial condition rating scheme for infrastruc-
tures in the Netherlands.
State Damage rating Structure rating
0 none perfect
1 initiation very good
2 minor good
3 multiple/serious reasonable
4 advanced/grave mediocre
5 threat to safety/functionality bad
6 extreme danger very bad

per year. Finally, since the proposed continuous-time
model assumes linear deterioration in time, a discrete-
time semi-Markov process is presented in Section 5
and a comparison of results is made.

2 BRIDGE INSPECTION DATA

Since late 1985, the results of inspections of infras-
tructures in the Netherlands are registered in an elec-
tronic database. This database is primarily used as
a central collection point of all information regard-
ing individual structures. This information includes,
amongst others, the year of construction, geographi-
cal location, technical drawings, record of damages,
and inspection history.

Each structure is divided into parts, each part into
main components, and each main component into el-
ements. For example: each part in a bridge contains
a superstructure, which is one of a number of main
components. The beams and the road surface are in-
dividual elements of the bridge superstructure. Dur-
ing an inspection, each damage to the bridge is regis-
tered and given a condition rating from 0 to 6. Based
on these damages and their severity, the main com-
ponents and the structure as a whole are also given
a rating. Table 1 shows the unofficial interpretation
of this rating scheme, which is used by inspectors. It
is an unofficial scheme as there are no strict regula-
tions on condition assessment of infrastructures in the
Netherlands.

The database includes a total of 5986 registered in-
spection events for 2473 individual superstructures.
Ignoring the time between the construction of the
bridge and the first inspection, there are over 3500
registered transitions between condition states. Tran-
sitions between the year of construction and the
first registered inspection are ignored, because most
bridges were constructed well before 1985 and it
would be incorrect to assume that they have not had
some kind of repair during this time. Starting from
the first registered inspection, the times of succes-
sive inspections and their rating results are known.
Table 2 shows the count, up to the summer of 2004,
of transitions between each possible pair of condition
states. The results of new inspections are added to the

Table 2. Count of transitions between condition states for
superstructures of concrete bridges.

To
0 1 2 3 4 5 6

0 520 134 327 111 36 7 0
1 270 128 222 97 36 7 0
2 284 101 368 193 61 9 5

From 3 94 33 119 131 42 3 1
4 16 14 42 50 17 7 0
5 7 3 4 4 3 0 1
6 1 1 0 3 1 0 0
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Figure 1. Histogram of inspection interval times.

database almost on a daily basis, therefore the number
of registered transitions increases continuously. From
Table 2 it is observed that states 5 and 6 rarely occur in
the database. In this paper, these states are combined
into state 5 to form a single state representing condi-
tions 5 and worse. Also, the transitions representing a
quality improvement will be ignored in the remainder
of this paper. Due to a lack of detailed information,
it is not possible to clearly identify and remove only
transitions due to maintenance.

Figure 1 shows a histogram of the times between
registered inspection events. Each bin represents a
time period of 6 months and the height of the bin
shows the number of inspection interval times which
fall into each period. The longest time between two
inspections is 167 months and the average time is
about 60 months or 5 years. The histogram suggests
that the distribution of the time between inspections
is bimodal with peaks around 2 and 6 years.

3 NOTATION

The reader is assumed to be familiar with the theory
of Markov processes. The notation used in the present
paper is similar to that used in e.g. Ross (1970). An
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object is assumed to be in any condition state given
by the setS = {0,1, . . . ,m}. Let {X(t), t ≥ 0} de-
note the state of the Markov process at timet and
Jn the state of the object aftern = 0,1,2, . . . tran-
sitions. Note that ifN(t) is the number of transi-
tions up to timet, then X(t) = JN(t). The transi-
tion probabilities for the Markov chain are denoted by
Pij = Pr{Jn+1 = j |Jn = i} and the transition proba-
bility matrix by P = ||Pij||. For a semi-Markov pro-
cess, letFij(t) = Pr{T ≤ t |Jn = i, Jn+1 = j } denote
the cumulative probability distribution of the transi-
tion time given that the object performs a transition
from statei to j. The probability of moving from state
i to j in an amount of time less than or equal tot is
given by the productQij(t) = PijFij(t).

4 CONTINUOUS-TIME MARKOV PROCESS

It is assumed that the waiting time in each condition
state is exponential with rateλ > 0, i.e. T ∼ Exp(λ)
and FT (t) = 1 − exp(−λt), and that the structure
moves into the next worse condition at each transi-
tion with probability one. With these assumptions, the
transitions occur according to a Poisson process. The
probability of performingn transitions during a time
period of lengtht is therefore given by the Poisson
distribution:

Pr{N(t) = n} =
(λt)n

n!
e−λt for n = 0,1,2, . . . (1)

For superstructures, many observations of the num-
ber of transitions during a period of time are available
from the inspection database. If there arek observa-
tions(t1, n1), (t2, n2), . . . , (tk, nk), then the likelihood
of the data is given by

Pr{N(t1) = n1, . . . ,N(tk) = nk} =
k∏

i=1

(λti)
ni

ni!
e−λti . (2)

The maximum likelihood estimator forλ is

λ̂ =
∑k

i=1 ni

/∑k
i=1 ti. (3)

Using the data from the inspections, an estimate for
the rate is obtained:λ = 0.1793. The mean waiting
time in each state is therefore approximately1/λ =
5.577 years.

Let Sn =
∑n

i=1 Ti, whereTi is the waiting time
between transitions, be the time it takes for the pro-
cess to performn transitions. The sum ofn exponen-
tial random variables with the same scale parameter
λ > 0 has a gamma distribution. The probability den-
sity function is given by

fSn(t) =
λn

Γ(n)
tn−1e−λt for t ≥ 0, (4)

whereΓ(a) =
∫∞
0

ta−1e−tdt is the gamma function.
Forn = 1,2, . . ., this distribution is also called the Er-
lang distribution andΓ(n) = (n− 1)!. The result for
the superstructure inspection data is presented in Fig-
ure 6.

4.1 Inspection model

This relatively simple deterioration process can now
be used to optimize inspection and maintenance de-
cisions. The classic approach, see e.g. Ross (1970),
would be to use a semi-Markov decision process to
determine the policy with the lowest expected (dis-
counted) costs. The solution is obtained by calculat-
ing successive policies until the expected costs can be
no further minimized. This is the so-called ‘policy im-
provement algorithm’. In this paper, a less common,
but far easier approach is introduced.

Assume the following: the bridges are inspected pe-
riodically at regular time intervals and a repair is per-
formed based on the condition of the structure at the
time of inspection. Let the threshold for preventive re-
pair (before failure) be stater (0 < r < m) and for cor-
rective repair (after failure) states (r < s ≤ m). Re-
pairs are assumed to be instantaneous and performed
immediately after inspection. Also, repairs are as-
sumed to be perfect, therefore the structure is as good
as new after a repair. Using renewal theory, the ex-
pected costs per unit time are given by the ratio of
the expected costs per cycle over the expected cycle
length. A cycle starts after the construction of the ob-
ject or after a perfect repair and ends when either a
preventive or corrective repair is performed.

To determine the expected time at which a cycle is
ended by a repair, the probability of both a preven-
tive and a corrective repair after an inspection must
be calculated. The following equivalence holds:

X(t) ≤ n⇔ Sn ≥ t. (5)

In words: if the state of the object is less than or equal
to n at timet, the time required to performn transi-
tions is greater than or equal tot. Let τ > 0 be the in-
spection interval andk = 0,1,2, . . . such thatkτ rep-
resents the time of thek-th inspection. A preventive
repair is performed at timekτ if the state of the object
during the previous inspection at time(k − 1)τ had
not yet reached stater, but is greater than or equal
to r and less than the failure states at timekτ . The
probability of this event is

Pr{preventive repair in period((k− 1)τ, kτ ]}
= Pr{X((k− 1)τ) < r, r ≤ X(kτ) < s} .

Using the relationship in Equation (5), this probability
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becomes

Pr{(k− 1)τ < Sr ≤ kτ,Ss > kτ}

=
s−r−1∑

j=0

(λkτ)j+r

(j + r)!
e−λkτ

[
1− I1− 1

k
(r, j + 1)

]
, (6)

whereIx(a, b) =
∫ x

φ=0
Γ(a+b)
Γ(a)Γ(b)

φa−1(1− φ)b−1dφ is the
incomplete beta function for0 ≤ x ≤ 1, a > 0 and
b > 0, see e.g. Abramowitz and Stegun (1965). The
derivation of this result is given in the appendix at the
end of this paper. For a corrective repair, the state at
the previous inspection was again less thanr, but is
greater than or equal to the failure states at timekτ :

Pr{corrective repair in period((k− 1)τ, kτ ]}
= Pr{X((k− 1)τ) < r,X(kτ) ≥ s} .

Again, using Equation (5), this becomes

Pr{Sr > (k− 1)τ, (k− 1)τ < Ss ≤ kτ}
= Pr{(k− 1)τ < Sr < Ss ≤ kτ}
= Pr{(k− 1)τ < Sr ≤ kτ}

−Pr{(k− 1)τ < Sr ≤ kτ,Ss > kτ}
= Pr{Sr > (k− 1)τ} −Pr{Sr > kτ}

−Pr{(k− 1)τ < Sr ≤ kτ,Ss > kτ}
= P (λkτ, r)− P (λ(k− 1)τ, r)

−
s−r−1∑

j=0

(λkτ)j+r

(j + r)!
e−λkτ

[
1− I1− 1

k
(r, j + 1)

]
, (7)

whereP (x,a) = 1
Γ(a)

∫ x

t=0
ta−1e−tdt is the incomplete

gamma function, see Abramowitz and Stegun (1965).

4.2 Cost optimization

Two cost models are presented here. One where fail-
ure of a structure is noticed immediately without the
necessity of performing an inspection and one model
where failure is not noticed until the next planned in-
spection. The latter model suits the case of superstruc-
tures very well, because physical failure never occurs
and an inspection is required to assess the state of the
superstructure.

The costs per cycle are the sum of the costs of all
inspections and either a single preventive or a single
corrective replacement. For the first model, the ex-
pected cycle costs are

E [C] =
∞∑

k=1

[
(kcI + cR)Pr{PR in((k− 1)τ, kτ ]}

+ ((k− 1)cI + cF )Pr{CR in ((k− 1)τ, kτ ]}
]
, (8)

where PR is preventive repair, CR is corrective repair,
andcI , cP andcF are the costs of an inspection, pre-
ventive repair and a corrective repair respectively. The
expected cycle length is

E [I] =
∞∑

k=1

[
kτPr{PR in(k− 1, k]}

+
kτ∑

n=(k−1)τ+1

nPr{CR in (n− 1, n]}
]
. (9)

The summation overn from (k − 1)τ + 1 to kτ re-
flects the immediate identification of a failure.

For the second model, in which failure is not no-
ticed until the next inspection, Equations (8) and (9)
become

E [C] =
∞∑

k=1

[
(kcI + cR)Pr{PR in((k− 1)τ, kτ ]}

+ ((k− 1)cI + cF )Pr{CR in ((k− 1)τ, kτ ]}+
kτ∑

n=(k−1)τ+1

cU(kτ − n)Pr{failure in (n− 1, n]}
]
,

(10)

and

E [I] =
∞∑

k=1

[
kτPr{PR in((k− 1)τ, kτ ]}

+ kτPr{CR in ((k− 1)τ, kτ ]}
]
, (11)

wherecU are the costs of unavailability per unit time.
This cost is added in Equation (10) as a penalty for
leaving a structure in a failed state. The costs increase
proportionally to the time that the superstructure is
left in the failed state. Without this cost, the cheapest
solution would be to not inspect at all, because the
costs per unit time will decrease as the cycle length
increases.

Two hypothetical examples are considered with fic-
titious costs presented in Table 3. Example A consid-

Table 3. Costs for two hypothetical examples.

Example A Example B
Failure detection immediate by inspection
Inspection (cI ) e1000 e1000
Prev. repair (cP ) e10000 e10000
Corr. repair (cF ) e40000 e10000
Unavailability (cU ) N/A e2000

ers the case in which a failure is immediately detected
and repaired without the need for an inspection. Costs
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Figure 2. Expected average costs per year as a function of
the inspection intervalτ .

for corrective repair are four times the costs of a pre-
ventive repair, therefore it will be economically inter-
esting to repair before failure occurs. Example B con-
siders the other case, in which failure is not detected
until the next inspection and a cost is incurred for each
unit of time that the superstructure is in a failed state.
Also, the cost for corrective repair is the same as for
a preventive repair, therefore it will not be econom-
ically interesting to perform preventive maintenance.
For both examples, the threshold for preventive repair
is stater = 3 and the failed state is states = 5. The
unit time considered in both examples is one year.

The results for both examples are shown in Figure
2. Since corrective repair is expensive compared to
preventive repair in example A, the inspection interval
with lowest expected average costs per year is shorter
than the same optimal value for example B: 6 years
compared to 13 years for example B. With a mean
time to preventive repair of aboutr/λ = 3× 5.577 =
16.7 years. This implies that about 3 inspections are
performed for example A and a preventive repair is
done after about 18 years. For example B, only about
2 inspections are performed and a repair is performed
after about 26 years. Asτ →∞, the costs in example
A converge to the costs of one inspection and a correc-
tive repair,e41000, divided by the expected lifetime
of 28 years, which is approximatelye 1460. The costs
in example B do not converge, but increase every year
due to the cost of unavailability.

The cost model presented in this section is easier to
implement than the classic policy improvement algo-
rithm. Instead of presenting the decision maker with
a single optimal value, this approach results in a clear
graphical presentation as is demonstrated by Figure
2. Also, the models can be adjusted for various situ-
ations. For example, Equations (8) to (11) can be ad-
justed to include discounting, see e.g. van Noortwijk
et al. (1997), or to include the time of the first inspec-

tion as an extra decision variable. The latter exten-
sion has been demonstrated before by Jia and Christer
(2002) and is useful when the thresholds for preven-
tive and corrective maintenance are very close to each
other. When the difference in costs for preventive or
corrective replacement is large, this would result in a
very short inspection interval, which would be unnec-
essary when the structure has just been taken into ser-
vice. The model will determine the optimal combina-
tion of the time of first inspection and the subsequent
periodic inspection interval.

5 MODEL COMPARISON

Because the choice for the continuous-time Markov
process implicitly assumes a linear deterioration rate,
a semi-Markov process is fitted to the data and the
results are compared. In a semi-Markov process, the
Markov property only holds at the transition times.
The waiting time is modelled by a probability distri-
bution other than the exponential distribution.

For semi-Markov processes, the probability of
moving from statei to statej during a time period
t is given by the transition probability function, see
e.g. Ross (1970):

Pjj(t) = 1−
m∑

k=0

∫ t

x=0

[1− Pkj(t− x)]dQjk(x),

Pij(t) =
m∑

k=0

∫ t

x=0

Pkj(t− x)dQik(x), i 6= j,

(12)

where Pij(t) = Pr{X(t) = j |X(0) = i}. The
discrete-time semi-Markov process was defined by
Howard (1971b) as an extension of Markov chains.
By restricting the transition times to a discrete
time scale, Equation (12) can be approximated for
computational convenience by

Pjj(t) = 1−
m∑

k=0

t∑
x=1

[1− Pkj(t− x)] qjk(x),

Pij(t) =
m∑

k=0

t∑
x=1

Pkj(t− x)qik(x), i 6= j,

(13)

where it is assumed thatt = 1,2, . . . and qij(t) =
Pr{T = t, Jn = i, Jn+1 = j}. Obviously,Pjj(0) = 1
andPij(0) = 0 for i 6= j. The productPkj(t−x)qik(x)
represents the probability of a transition from statei
to k in a timex and subsequently moving fromk to j
in the remainingt− x time.

For a sufficient number of observations, Billingsley
(1961) has shown that the maximum likelihood esti-
mator for the transition probability from statei to j
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Figure 3. Weibull probability plot for inspection inter-
val times (+) with a fitted 2-Weibull mixture distribution
(solid line).

is simply given byP̂ij = Nij/
∑m

j=0 Nij, whereNij is
the number of observed transitions fromi to j. Ignor-
ing the transition counts in the lower triangular part of
Table 2, the following transition matrix is obtained:

P =




0.46 0.12 0.29 0.09 0.03 0.01
0 0.26 0.45 0.20 0.07 0.02
0 0 0.58 0.30 0.10 0.02
0 0 0 0.74 0.24 0.02
0 0 0 0 0.71 0.29
0 0 0 0 0 1




(14)

To determineqij(t), the probability distribution of the
waiting timeFij(t) is needed. An informal analysis
of the data suggests that the inspection interval length
has a low dependence with the state the structure is
in. For simplification, it is therefore assumed that the
waiting time is independent of the condition state. The
bimodal random waiting timeT , as shown in Figure
1, is modelled by a 2-Weibull mixture distribution of
which the probability density is given by

fT (t) = pg1(t) + (1− p)g2(t), (15)

where0 ≤ p ≤ 1 and

gi(t) = (ai/bi) (t/bi)
ai−1 exp{−(t/bi)

ai}
is the Weibull density function with shape param-
eter ai > 0 and scale parameterbi > 0. Figure 3
shows the maximum likelihood fit with parameters
p = 0.1999, a1 = 1.9752, b1 = 1.8199, a2 = 3.0505
andb2 = 6.7329.

Using Equation (13), the relative frequency of
states for superstructures of aget in the bridge net-
work can be determined by

Pr{X(t) = j} =
∑m

i=0 Pij(t)Pr{X(0) = i} .
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Figure 4. Relative frequency of condition states as a func-
tion of bridge age.

For Pr{X(0) = 0} = 1, this result is shown in Fig-
ure 4 as a function oft, which is considered to be the
age of the superstructure. This result shows that if all
superstructures start in the initial state 0 and no main-
tenance would be performed, less than 3% of these
would still be in the initial state and 40% would al-
ready be in state 5 by the age of 40 years. State 1
is very rare and the second column of the transition
matrix (14) shows that objects in state 0 have only a
small probability of moving into state 1 and objects in
state 1 have a small probability of staying there. De-
terioration is initially quite fast, but slows down after
the structures go into state 3 and 4.

The expected state at timet can be easily obtained
by calculatingE [X(t)] =

∑m
j=0 j · Pr{X(t) = j}. In

Figure 5, this expectation is compared to the expected
state of the continuous-time Markov process. Using
Equations (1) and (4), the expected condition for the
continuous-time Markov process is determined by:

E [X(t)] =
m−1∑
j=0

j ·Pr{N(t) = j}+ m ·Pr{Sm ≤ t} .

The maximum likelihood estimate of the parameter
λ is dominated by the observations of transitions be-
tween states 0, 1 and 2, which together constitute
more than two thirds of all observations. Note that
the expectation for the continuous-time Markov pro-
ces is initially linear, but eventually converges to the
absorbing state 5. Although bridge deterioration is
usually assumed to be non-linear, the result in Figure
5 is somewhat surprising. In this case, deterioration
is faster in the early stages compared to later stages,
whereas the most common assumption is the exact op-
posite.

Now, the first passage time for the discrete-time
semi-Markov process is determined and compared to
the equivalent result for the continuous-time Markov

6
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Figure 5. Expected state of superstructures determined
by the discrete-time semi-Markov (DTSMP) and the
continuous-time Markov processes (CTMP).

process. The first passage time is the first time the pro-
cess reaches a selected state. The probability density
of first reaching statej from statei after exactlyn
steps

fij(n) = Pr{Jn = j, Jn−1 6= j, . . . , J1 6= j |J0 = i}
can be calculated using the following simple recursive
equation; Howard (1971a):

fij(n) =

{ ∑m
k 6=j Pikfkj(n− 1), n > 1,

Pij, n = 1.
(16)

The first passage time is the product of the number
of transitions and the waiting time per transition if,
as is assumed here, the waiting timeT is independent
of the transition. LetN be a discrete random variable
representing the number of transitions to first passage
and letZ = NT . The probability distribution of the
product of these two random variables is given by

fZ(z) =
∑∞

n=1 n−1fN(n)fT (z/n),

wherefT (t) is the density of the waiting time given
by Equation (15) andfN(n), for n = 1,2, . . ., is the
probability function of the number of steps given by
Equation (16). Figure 6 shows the result for the first
passage time from state 0 to 5 and compares it to the
same result for the continuous-time Markov process.
The distribution for the discrete-time semi-Markov
process has a very thick tail, which places the mean
first passage time relatively high: approximately 47
years. The uncertainty in the first passage time for
the continuous-time Markov process is much smaller
and has almost no tail compared to the discrete-time
Markov process. The expected lifetime in this case is
approximately 28 years. Note that the expected time
to failure is not the same as the time for the expected
condition to reach state 5.
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Figure 6. Probability density of first passage time from
state 0 to 5 for the discrete-time semi-Markov process
(DTSMP) and continuous-time Markov process (CTMP).

6 CONCLUSIONS

Traditionally, Markov chains have been used for mod-
elling deterioration on a discrete condition scale.
Semi-Markov processes have recently received inter-
est in structural engineering, because they allow for
the use of random waiting times in condition states.
Preferably, the waiting times should be modelled by
probability distributions with an increasing failure
rate. However, experience with bridge inspection data
in the Netherlands, shows that adequate information
for proper fitting of the distribution parameters is un-
available. This is due to the periodicity of the inspec-
tions and the subjective rating systems generally used
in visual condition evaluations.

A continuous-time Markov process provides a
probabilistic framework for inspection and mainte-
nance optimization, which is analytically tractable.
The deterioration model can be easily fitted to the ob-
servations from the inspection database in the Nether-
lands. The cost model introduced in Section 4.2 pro-
vides an alternative approach to the classic policy iter-
ation algorithm. Two examples have been presented:
one where failure is observed immediately without an
inspection and a second example where failure is not
noticed until the next inspection.

An important restriction of the continuous-time
Markov model for deterioration is the assumption that
the mean waiting time is the same for all states. Fur-
ther development could therefore include the possi-
bility of definingλi for each statei = 0,1, . . . ,m− 1,
such that the deterioration process can also be non-
linear. This will, amongst others, require different for-
mulations for the likelihood of observations in Equa-
tion (2) and the probability of preventive and correc-
tive repair in Equations (6) and (7) respectively.

From an organizational point of view, more re-

7



search will also need to be done in order to better dif-
ferentiate deterioration from maintenance in the data
in Table 2. It is relatively sure that a transition from
state 5 to 0 was due to maintenance. However, a tran-
sition from state 4 to 3 could also occur because of the
inconsistency in condition rating, which is due to the
subjective interpretation of the damage and the rat-
ing system by the inspector(s). Unfortunately, main-
tenance actions have not been registered in the same
database as the inspections, but are kept decentral-
ized. A strong effort will be required to filter those
transitions from the data, which are really due to dete-
rioration. Finally, the imperfection of the visual eval-
uation by inspectors could also be modelled.
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8 APPENDIX

The result in Equation (6) is obtained by splitting the
probability and using the independence of the incre-
mentsSr andSs − Sr:

Pr{(k− 1)τ < Sr ≤ kτ, kτ − Sr < Ss − Sr}
= Pr{Sr ≤ kτ, kτ − Sr < Ss − Sr}−

Pr{Sr ≤ (k− 1)τ, kτ − Sr < Ss − Sr} .

Denoting the difference of these two probabilities by
A−B, each of these can be calculated as follows:

A =

∫ kτ

φ=0

∫ ∞

θ=kτ−φ

fSr(φ)fSs−Sr(θ)dθdφ

=

∫ kτ

φ=0

fSr(φ)

[∫ ∞

θ=kτ−φ

fSs−Sr(θ)dθ

]
dφ

=

∫ kτ

φ=0

λrφr−1e−λφ

(r− 1)!

[
s−r−1∑

j=0

λj(kτ − φ)j

j!
e−λ(kτ−φ)

]
dφ

=
s−r−1∑

j=0

[
λ(j+r)

(j + r)!
e−λkτ (kτ)j+r−1 ·

·
∫ kτ

φ=0

(j + r)!

(r− 1)!j!

(
1− φ

kτ

)j (
φ

kτ

)r−1

dφ

]
.

With the substitutionϕ = φ
kτ

, the beta function inte-
grates out:

A =
s−r−1∑

j=0

[
λ(j+r)

(j + r)!
e−λkτ (kτ)j+r−1 ·

· kτ

∫ 1

ϕ=0

(j + r)!

(r− 1)!j!
(1− ϕ)jϕr−1dϕ

]

=
s−r−1∑

j=0

(λkτ)j+r

(j + r)!
e−λkτ .

The same calculations can be used to derive the sec-
ond part:

B =
s−r−1∑

j=0

(λkτ)j+r

(j + r)!
e−λkτI1− 1

k
(r, j + 1).

The differenceA−B results in Equation (6).
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